
Escher Player Physics
- A Quick(ish) Guide for Mappers

This is a quick overview of the new steps involved in making a map to work with
the escher physics mutator. It assumes you already have a good understanding
of unrealEd. I apologise in advance for the loose unstructured form of the
document, it was compiled over many months as changes to the code were
made, and I’m just too lazy to rewrite it.

This whole system relies almost entirely on custom pawn and playerController
classes, and as such it’s probably unlikely to be compatible with mods or
mutators which use their own versions of these classes.

Before you Start

Before using anything, you will need to get the escher physics mutator embedded
in your map. This makes it easy for players to play your map – they don’t need to
find the mutator and add it manually for the map to work properly.

You will firstly need the escherPhysicsMut.u and escherPhysicsCode.u files
placed in your UT2004/system directory. Should be fairly straightforward. You
must also add escherPhysicsCode to your editPackages and serverPackages in
UT2004.ini. Note that it is completely unnecessary to add the escherPhysicsMut
package to your serverPackages or editPackages lines, and in fact doing so will
cause problems for you.

Open up unrealEd to the map you’re working on or a new one, whatever. Type
the following into the command entry field at the bottom left of your viewports:

obj load file=escherPhysicsMut.u package=myLevel

This will now have loaded up the mutator for your use in the map. If you only
plan on doing this once, you can get rid of escherPhysicsMut.u file as you only
need it for this step. Go to the actor class browser and uncheck and recheck
‘show placeable classes only’. This is just to refresh the window. You are now able
to see all the escher physics classes (if youre lucky, I find you usually need to
type the command in at least twice to get it to actually load), so select
info/Mutator/escherMutTemplate/escherMut and add it into the map wherever
you like.

You’re ready to go now – when someone loads up your map the mutator will
already be running. Note that you MUST include the escherPhysicsCode.u file
along with your map in order for it to run, and that you do not need
escherPhysicsMut.u any more. Also make sure anyone who downloads your
map to host multiplayer games with understands that they must add

serverPackages=escherPhysicsCode

to their UT2004.ini, or the map will not load for remote clients.

Things to Note

Some things that you would normally be able to do in an unreal level are not
possible with the escher physics mutator running:

- The view will be very jumpy when walking over stairs or other small
variations in the level. A good way to get around this is to use invisible
staticMeshes or brushes (just use regular ones with an invisible texture)
on your stairs to make the actual collision of them like a ramp. You cannot
use blockingVolumes for this at the moment.

- Be careful with stairs, as players will only walk on surfaces that are
roughly horizontal to the area they are currently in. So steep slopes might
not be able to be walked on unless you add a volume pointing gravity
more perpendicularly into them. There is a 45° tolerance each way.

- Players will slide over blockingvolumes without walking on them. Could be
used to make some cool ice-like effects.

- Players sometimes get stuck on the joins between brushes, even if the join
is perfectly flat. They also sometimes start to slide around a bit. You can’t
really do much about this, but you should be aware of it. Tapping the
jump key makes the player unstuck/unslippery anyway.

- I’ve disabled the translocator for this mutator at the moment. It would do
very weird things with reorienting the player after teleporting, which I am
currently too lazy to fix.

- Pickups still fall with respect to normal level gravity if dropped.
- Doorways should be made wider than normal as the player is now the

same width as height, for various reasons. The exact measurement is
88UU high and wide.

- Having two volumes with the same gravity actor touching each other can
sometimes lead to problems, especially when also coinciding with a zone
portal. If things start to go weird on you, I recommend either combining
the brushes with the 2D shape editor, or making different gravity actors
for each which point in an identical direction.

- Players sort of skip down slopes instead of walking flat on them.
- Bio Globs always fall downwards (relative to the world) when they drip

from a surface.

To control gravity, you use a combination of zone gravity (escherZones) and
volume gravity (escherVolumes).
Players decide which gravity to use by the following priorities:

- If neither in an escherZone or escherVolume, player will fall in the
direction of their feet.

- If in an escherZone only, player uses the gravity vector of that zone.
- If in an escherZone and escherVolume, player uses the gravity of the

volume.
- If in multiple escherVolumes, player uses the gravity of the escherVolume

with the highest Priority (found in PhysicsVolume section of the volume’s
properties).

Zones

To provide a means of configuring gravity in large areas of your maps, you may
use the ‘escherZone’ subclass of zoneInfo. This works exactly the same as a
standard zoneInfo, except that it has a directional arrow for the direction of
gravity in that zone.

The escherZone class also has an additional property, ‘bNewMoveProjectiles’ for
setting whether the zone’s gravity will effect certain projectiles. If true, projectiles
will fall in the direction of the zone’s gravity. If false, they will use default level
gravity. The default is true. This does not effect projectiles that travel in a
straight line (eg rockets). All the normal UT2004 weapons with falling projectiles
have been subclassed for this (bio rifle, flak cannon, grenade launcher and mine
layer), and so will work fine. If you wish your mod or mutator’s projectiles to be
compatible with Escher gravity, read up on the section about it at the bottom of
this document. Weapons in Onslaught weapon lockers don’t get replaced, and
won’t work. If you want these weapons in an onslaught map, stick them on an
xWeaponBase instead.

You can find the escherZone class at Actor/Info/ZoneInfo/escherZone.

Volumes

To give you finer control over how gravity effects the player, use the
escherVolume class. You create these volumes in the normal way, by right
clicking on the volume creator with a brush selected. Simply select
‘escherVolume’ as the volume type.

escherVolumes also have a ‘bNewMoveProjectiles’ property, which works in
exactly the same way as for escherZones. Projectiles will fall in the direction of
the volume’s gravity before that of the zones, and also respect volume priority as
players do.

To setup the gravity for an escherVolume, you must add another actor and link it
to the volume. Each volume may have only one of these actors. If more or less
are found, log warnings will be generated for you, giving the name of the volume
in error. Volumes may share a single actor, however.
You have three options:

Field gravity

This is where you specify a direction for the player to fall when in this
volume. To do this, add a ‘gravityDirection’ actor inside or near the
volume (found under actor/gravityDirection). The gravityDirection
actor has a directional arrow like the escherZones, which specifies the
direction of the gravity for the volume.

Point Gravity
To create a volume where players will fall towards a point like a
singularity, use the ‘gravityPoint’ actor (found under
actor/gravityDirection/gravityPoint). Players will automatically
orient themselves on the roll axis so that their feet point down towards the
gravityPoint actor.
Don’t use this for things like walking on all sides of a rectangular prism, as
it will pull players to the middle of each face when they jump. For this kind
of thing, it is much better to use a field gravity volume for each face.

Inverse Point Gravity
The same as point gravity, except the players fall away from the point you
specify. For this one, use the ‘antiGravityPoint’ actor, under
actor/gravityDirection/antiGravityPoint.

To link these actors to a volume, simply set the tag property of both to be the
same (you can find this in the events section of each object’s properties). Be
sure not to get the names wrong here, or bad stuff happens! The easiest way to
check is to use some capitalisation the first time you type the name, then type it
all lower case the second time. If a match was found, the second tag property will
change case to match the first.

The game won’t care if you have gravity actors floating around without volumes
assigned to them, but if you have a volume without a gravity actor, or more than
one gravity actor, it will get angry and drop log warnings in UT2004.log for you,
listing the name of the problematic volume and number of detected gravity actors
so that you may easily fix it. Also note that none of these actors need be inside
their corresponding volume. I recommend you use the same field gravity actor
(not point or inverse point, obviously) to configure all volumes with the same
gravity direction, to make things easier for yourself and enable you to make fine
adjustments to the gravity in similar volumes through the same actor.

Final Things to Note

Slope tolerance
If you’re feeling advanced, there is an additional property in the escherMut you
added to your map before. You’ll find it under the ‘escherMut’ group in its
properties. You can use this to set the angle tolerance which will be registered as
a floor in zones and volumes. The default is 45 – this means that your player will
be able to walk on any surface, so long as there is less than 45° difference
between it and the gravity in that zone. Unless you’re confident that you’re
setting your gravityDirection actors to the exact right rotation however, you
should probably set this 5° or so above what you need. If you set this value to
something stupid, it will clamp your entry to a 0-90° range internally. Note that
this setting effects the distance underneath the player that will be counted as still
being on the ground, so don’t set it higher than you need or you will find your
players walking slightly above the ground after coming off slopes.

Debugging
The escherMut also has a property you can set for debugging. Set bDebug to true
to display useful info on your HUD in real time – the current gravity vector, actor,
volume and zone. If you notice that the player still thinks it is in a volume after it
leaves, this problem is probably due to touching volumes with the same gravity
actor, as explained under ‘things to note’. Volumes with non-planar faces will fuck
it right up. The easiest way I have found to fix this behaviour is to work out the
problematic zone and delete it and its actor, and rebuild. Just make sure you turn
debug mode off before releasing your map! It will slow the game down an awful
lot over time.

Mutator naming
The escher mutator you add into your map MUST have the name escherMut0.
This is the default name, but if you have added multiple ones and deleted the old
etc, you will probably have problems (where by problems I mean that nothing will
work). If this happens, delete all the escherMuts in the level, save it, then reopen
unrealEd and add your escherMut in again.

Perpendicular angles
If you want to make levels where the player walks around on walls at
perpendicular angles, you’ll need to note that they will only be able to travel in
one direction fluidly. This is simply because a player can only be in one volume at
a time. To fix this, you should either add higher priority 45° volumes in every
corner (tedious), or make the corners of your volumes wedge shaped. I find that
if you make the volumes overlap, and make the higher priority volume angle into
the corner at a 1:2 gradient, this is just about the right amount for players to
walk around in one direction, and be able to jump to get out of the higher priority
volume in the other direction.

PlayTesting!!
I strongly recommend you playtest things vigorously before you release a map.
Things like a point gravity actor without anything between it and the players
could easily result in the player falling to the middle of the volume and getting
stuck there. Point gravity actors are more designed for things like walking on the
outside of a sphere (you would place the point gravity actor inside the sphere).
There’s lots of other ways to get people stuck as well, believe me.

Naming your maps
Also, I’d like to impose a naming convention and request that any map you
release based on this system have the prefix DM-MCE- (or CTF-MCE-, DDOM-
MCE- etc, for M. C. Escher) so that all the maps that use it are kept together in
people’s maplists and people know they will be running a mutator with the maps.

Player Starts
The normal playerStarts will only let you place them on flat ground, or they will
throw errors when you compile the map. To get around this, use the
MCEPlayerStart which can be found under
Actor/NavigationPoint/SmallNavigationPoint/PlayerStart in the actor class
browser. You can place these anywhere without unrealEd freaking out on you.

Weapon and Pickup Bases
The normal weapon and pickup bases will place their pickup directly above the
base, which is not really what you want at all. Use the MCE variants of the
regular bases to override this behaviour – the pickup will be spawned at the
‘proper’ location. All these classes can be found under xPickupBase, and are
named in the same way as their regular UT counterparts. Note that the pickup
itself will still rotate as if on the ground (fixing that would require subclassing
every known pickup, which I’m damned if I was going to do). Oh well, at least it
will be in the right place.

Compatibility with 3rd Party Weapon Projectiles
Skip over this if you’re not a coder and don’t plan on playing with it…

In order for projectiles to be properly effected by zones and volumes when using
the ‘bNewMoveProjectiles’ option, they must have some special variables set.
These are unfortunately constant variables, which means that you must pretty
much rebuild their entire class tree to make them work.

Projectiles are bGameRelevant, which means they can’t be replaced by a Mutator.
Weapons aren’t, however, so youll need to start by creating a subclass of your
weapon. You change its defaults, giving it new fireModeClasses and a new
pickupClass which basically needs to be subclassed to provide a backwards
reference to this new weapon class. The new fireModeClasses are there to
reference your new projectile subclass. Give your projectile subclass the following
defaultProperties:

bNetTemporary=false
 bUpdateSimulatedPosition = true
 bReplicateMovement = true
 bOnlyDirtyReplication = false
 TossZ=0

Now that you’ve set these up, the projectile will work properly in the gravity
volumes. Doing this makes them take up a great deal more network bandwidth
than they usually would, so only use it if you think it’s really necessary.

A sample setup for the bioRifle is included in this archive so that you can see how
it’s done. Note that it is completely unnecessary to make new subclasses if your
weapon’s projectiles aren’t effected by gravity. Even if they are, you can always
opt for having them fall regularly anyway, it’s up to you.

Stick all the classes you need to make your mod or mutator compatible in some
archive and compile them. *Please* name the archive something like
escherProjectilesMYMOD.u (MYMOD being the name of your thing) so that all
these packages are kept together. Also note that any use of these new
weapons/projectiles online will require that players add your new package to their
serverPackages as well. If they don’t, clients don’t get the weapon or the
projectiles. Weird, but what can you do.

Now that you’ve done the hard part, actually getting this new projectile into the
game in place of your old one is pretty simple. Go to the escherMut you placed in
your map, and open its properties. You will see an array called
projectiledWeaponClasses and one called projectiledWeaponReplacements.
Put the class of your old pickup in the first array, the class of your new pickup in
the second. So long as they are at the same position in the arrays, everything will
work fine ingame. If your mod uses a different defaultWeapon to the assault rifle,
youll need to put its class name (or subclassed one if it uses falling projectiles) as
the NewDefaultWeaponName property.

Legal shit
If you make a map or a projectile package with this mutator, I would really like to
know about it so that I can keep a list of them all together on the download page
and make it easy for people to find these maps. Send me an email at
pospi@spadgos.com.
Oh, and remember to always give credit where it’s due. A little “uses pospi’s
Escher Physics Mutator” in your map readme or description would be much
appreciated (:

Have fun!
pospi

25-10-2005

http://pospi.spadgos.com

http://pospi.spadgos.com/
mailto:pospi@spadgos.com

